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What will be covered today

• Convex Optimization

– why convex optimization?

– optimization problems

– definition of convex optimization

– convex optimizations in ML

• Dual Problems

– Lagrangian and dual function

– dual problem examples

– KKT condition

– optimality condition for support vector machine (SVM) formulation
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Why convex optimization?

• many machine learning algorithms (inherently) depend on convex optimization

• quite a few optimization problems can (actually) be solved

• many engineering and scientific problems can be cast into convex optimization problems

• many more can be approximated to convex optimization

• convex optimization sheds lights on understanding intrinsic property and structure of

all optimization problems
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Mathematical optimization

• mathematical optimization problem:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

– x =
[
x1 · · · xn

]T ∈ Rn is (vector) optimization variable

– f0 : Rn → R is objective function

– fi : Rn → R are inequality constraint functions

– hi : Rn → R are equality constraint functions
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Optimization problem example

• machine learning

– optimization variables: model parameters (e.g., neural net weights)

– objective: loss function / error function

– constraints: network architecture
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Solution methods

• for general optimization problems

– extremely difficult to solve (practically impossible to solve), e.g., TSP

– most methods try to find (good) suboptimal solutions, e.g., using heuristics

• some exceptions

– least-squares (LS)

– liner programming (LP)

– semidefinite programming (SDP)
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Least-squares (LS)

• least-squares (LS) problem:

minimize ‖Ax− b‖22 =
∑m

i=1(a
T
i x− bi)

2

– analytic solution: any solution satisfying (ATA)x∗ = ATb

– extremely reliable and efficient algorithms

– has been there at least since Gauss

• applications

– LS problems are easy to recognize

– has huge number of applications, e.g., line fitting
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Linear programming (LP)

• linear program (LP):
minimize cTx

subject to Ax ≤ b

– no analytic solution

– reliable and efficient algorithms exist, e.g., simplex method, interiorpoint method

– has been there at least since Fourier

– systematical algorithm existed since World War II

• applications

– less obvious to recognize (than LS)

– lots of problems can be cast into LP, e.g., network flow problem
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Semidefinite programming (SDP)

• semidefinite program (SDP):

minimize cTx

subject to F0 + x1F1 + · · ·+ xnFn � 0

– no analytic solution

– but, reliable and efficient algorithms exist, e.g., interior-point method

– recent technology

• applications

– never easy to recognize

– lots of problems, e.g., optimal control theory, can be cast into SDP

– extremely non-obvious, but convex, hence global optimality easily achieved!
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Max-det problem (extension of SDP)

• max-det program:

minimize cTx+ log det(F0 + x1F1 + · · ·+ xnFn)

subject to G0 + x1G1 + · · ·+ xnGn � 0

F0 + x1F1 + · · ·+ xnFn � 0

– no analytic solution

– but, reliable and efficient algorithms exist, e.g., interior-point method

– recent technology

• applications

– never easy to recognize

– lots of stochastic optimization problems, e.g., every covariance matrix is positive

semidefinite

– again convex, hence global optimality (relatively) easily achieved!
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Common features in these exceptions?

• they are convex optimization problems!

• convex optimization:

minimize f0(x)

subject to fi(x) �Ki 0, i = 1, . . . ,m

Ax = b

where

– f0(λx+(1−λ)y) ≤ λf0(x)+ (1−λ)f0(y) for all x, y ∈ Rn and 0 ≤ λ ≤ 1

– fi : Rn → Rki are Ki-convex w.r.t. proper cone Ki ⊆ Rki

– all equality constraints are linear
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Convex optimization

• algorithms

– classical algorithms like simplex method still work well for many LPs

– many state-of-the-art algorithms develoled for (even) large-scale convex optimization

problems

∗ barrier methods

∗ primal-dual interior-point methods

• applications

– huge number of engineering and scientific problems are (or can be cast into) convex

optimization problems

– many others can be (approximately) solved using convex relaxation
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What’s the fuss about convex optimization? Here’s why!

• which one of these problems are easier to solve?

– (generalized) geometric program with n = 3, 000 variables and m = 1, 000

constraints

minimize
∑p0

i=1 α0,ix
β0,i,1
1 · · · x

β0,i,n
n

subject to
∑pj

i=1 αj,ix
βj,i,1
1 · · · x

βj,i,n
n ≤ 1, j = 1, . . . ,m

with αj,i ≥ 0 and βj,i,k ∈ R
⇒ the global optimum can be found within 1 minute using your laptop!

– minimization of 10th order polynomial of n = 20 variables with no constraint

minimize
∑10

i1=1 · · ·
∑10

in=1 ci1,...,inx
i1
1 · · · x

in
n

with ci1,...,in ∈ R
⇒ you cannot solve it!
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Properties of convex optimization

• convex optimization problems can be solved extremely reliably (and fast)

• a local minimum is a global minimum, which is implied by

f(y) ≥ f(x) +∇f(x)T (y − x)

• nice theoretical property, e.g., self-concordance implies complexity bound (for Newton’s

method)

f(x0)− p∗

γ
+ log2 log2(1/ε)

• even better pratical performance!

• more on this in future seminars (hopefully)
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Convex optimization example in ML: linear regression

• formulation

minimize f(θ) = 1
m

∑m
i=1

(
θT
[

1

x(i)

]
− y(i)

)2

• linear regression is nothing but LS since

mf(θ) =

m∑
i=1

(
θ
T

[
1

x(i)

]
− y(i)

)2

=

∥∥∥∥∥∥∥
 1 x(1)T

... ...

1 x(m)T

 θ −
 y(1)

...

y(m)


∥∥∥∥∥∥∥
2

2

= ‖Xθ − y‖22

• convex in θ, hence obtains its global optimality when the gradient vanishes, i.e.,

m∇f(θ) = 2X
T
(Xθ − y) = 2((X

T
X)θ −XT

y) = 0

Gauss Labs R&D Seminar (14-May-2021) 16



Sunghee Yun Convex Optimization and Dual Problems

Convex optimization example in ML: ridge regression

• Ridge regression solves the following problem: (for some λ > 0)

minimize f0(x) = ‖Ax− y‖22 + λ‖x‖22

– regularization, e.g., to preventing overfitting

• can be extended to (without sacraficing solvability!)

minimize f0(x) = ‖Ax− y‖22 + λ‖x‖22 =

∥∥∥∥[ A√
λI

]
x−

[
y

0

]∥∥∥∥2
2

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

• can be incorporated into gradient descent algorithm, e.g.,

∇f(x) = 2A
T
(Ax− y) + 2λx
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Convex optimization example in ML: lasso

• (lasso stands for least absolute shrinkage & selection operator)

• lasso solves (a problem equivalent to) the following problem:

minimize f0(x) = ‖Ax− y‖2 + λ‖x‖1

– 1-norm penalty term for parameter selection

• objective funtion not smooth.

• however, simple trick would solve this problem (with additional convex inequality

constraints and affine equality constraints)

minimize f0(x) = ‖Ax− y‖2 + λ
∑n

i=1 zi
subject to −zi ≤ xi ≤ zi, i = 1, . . . , n
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Convex optimization example in ML: SVM

• problem definition:

– given x(i) ∈ Rp: input data, and y(i) ∈ {−1, 1}: output labels

– find hyperplane which separates two different classes as distinctively as possible (in

some measure)

• (typical) formulation:

minimize ‖a‖22 + γ
∑m

i=1 ui
subject to y(i)(aTx(i) + b) ≥ 1− ui, i = 1, . . . ,m

u ≥ 0

– convex optimization problem with optimization variables, a ∈ Rp, b ∈ R, and

u ∈ Rm

– hence stable and efficient algorithms exist even for very large problems

– has worked extremely well in practice
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Support vector machine with kernels

• use feature transformation φ : Rp → Rq (with q > p)

• formulation:

minimize ‖ã‖22 + γ
∑m

i=1 ũi
subject to y(i)(ãTφ(x(i)) + b̃) ≥ 1− ũi, i = 1, . . . ,m

ũ ≥ 0

• still convex optimization problem with optimization variables, ã ∈ Rq, b̃ ∈ R, and

ũ ∈ Rm
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Duality

• every (constrained) optimization problem has a dual problem (whether or not it is a

convex optimization problem)

• every dual problem is a convex optimization problem (whether or not the primal problem

is a convex optimization problem)

• duality provides optimality certificate, hence plays central role for modern optimization

and machine learning algorithm implementation

• (usually) solving one readily solves the other!
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Lagrangian

• standard form problem:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

where x ∈ Rn is optimization variable, D is domain, p∗ is optimal value

• Lagrangian: L : Rn × Rm × Rp → R with domL = D × Rm × Rp defined by

L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

– λi: Lagrange multiplier associated with fi(x) ≤ 0

– νi: Lagrange multiplier associated with hi(x) = 0
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Lagrange dual function

• Lagrange dual function: g : Rm × Rp → R defined by

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

)

– g is always concave

– g(λ, ν) can be −∞
• lower bound property: if λ ≥ 0, then g(λ, ν) ≤ p∗

Proof : If x̃ is feasible and λ ≥ 0, then f0(x̃) ≥ L(x̃, λ, ν) ≥
infx∈D L(x, λ, ν) = g(λ, ν). Thus,

p
∗
= inf

x∈F
f0(x) ≥ g(λ, ν)

where F = {x | fi(x) ≤ 0 for 1 ≤ i ≤ m, hj(x) = 0 for 1 ≤ j ≤ p}.
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Dual problem

• Lagrange dual problem:
maximize g(λ, ν)

subject to λ ≥ 0

– is a convex optimization problem

– provides a lower bound on p∗

• let d∗ denote the optimal value for the dual problem

– weak duality: d∗ ≤ p∗

– strong duality: d∗ = p∗
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Dual problem provides optimality certificate

• many algorithms solves the dual problem simultaneously

– Lagrangian dual variables obtained with no additional cost

• if iterative algorithm generates feasible solution sequence,

(x
(1)
, λ

(1)
, ν

(1)
)→ (x

(2)
, λ

(2)
, ν

(2)
)→ (x

(3)
, λ

(3)
, ν

(3)
)→ · · ·

then, we have an optimality certificate:

f(x
(k)

)− p∗ ≤ f(x(k)
)− g(λ(k)

, ν
(k)

)
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Weak duality

• weak duality implies d∗ ≤ p∗

– always true (by construction of dual problem)

– provides nontrivial lower bounds, especially, for difficult problems, e.g., solving the

following SDP:
maximize −1Tν
subject to W + diag(ν) � 0

gives a lower bound for (NP-hard) max-cut problem (maximizing total weight of

edges between a subset of vertices and its complement)

minimize xTWx

subject to x2
i = 1, i = 1, . . . , n
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Derivation of dual problem of max-cut problem

• Lagrangian

L(x, ν) = x
T
Wx+

n∑
i=1

νi(x
2
i − 1) = x

T
(W + diag(ν))x− 1

T
ν

• dual function

g(ν) = inf
x∈Rn

L(x, ν) =

{
−1Tν if W + diag(ν) � 0

−∞ otherwise

because xT (W + diag(ν))x is unbounded below if W + diag(ν) 6� 0
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• hence, the dual problem

maximize −1Tν
subject to W + diag(ν) � 0

where the optimization variable is ν ∈ Rn
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Dual of the dual of max-cut problem

• let the dual of the max-cut problem be our primal problem here

• primal problem
maximize −1Tν
subject to W + diag(ν) � 0

• Lagrangian

L(ν,X) = −1Tν + TrX(W + diag(ν)) =
n∑
i=1

νi(Xii − 1) + TrXW
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• dual function

g(X) = sup
ν∈Rn

L(ν,X) =

{
TrXW if Xii = 1 for i = 1, . . . , n

∞ otherwise

• hence, the dual problem

minimize TrXW

subject to Xii = 1 for i = 1, . . . , n
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Dual of dual is convex relaxation of the original problem

• now add rank one constraint i.e.,

minimize TrXW

subject to Xii = 1 for i = 1, . . . , n

rank(X) = 1

then this is equivalent to the original max-cut problem because

rank(X) = 1⇔ X = xx
T

for some x ∈ Rn

then

TrXW = Tr xx
T
W = Tr x

T
Wx = x

T
Wx

and

Xii = 1⇔ x
2
i = 1
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• thus it is the convex relaxation of the original problem

• hence, if d∗∗ is the optimal value of the dual of the dual, we have

d
∗
= d

∗∗ ≤ p∗

because the dual problem is strictly feasible, i.e., satisfies Slater’s condition (later)
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Strong duality

• strong duality implies d∗ = p∗

– not necessarily hold; does not hold in general

– usually holds for convex optimization problems

– conditions which guarantee strong duality in convex problems called constraint

qualifications

– example of constraint qualifications: Slater’s condition
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Duality example: LP

• primal problem:
minimize cTx

subject to Ax � b

• Lagrangian:

L(x, λ) = c
T
x+ λ

T
(Ax− b) = (c+ A

T
λ)

T
x− bTλ

• dual function:

g(λ) = inf
x
L(x, λ) =

{
−bTλ if ATλ+ c = 0

−∞ otherwise
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• dual problem:
maximize −bTλ
subject to ATλ+ c = 0

λ � 0

– Slater’s condition implies that p∗ = d∗ if Ax̃ ≺ b for some x̃

– truth is, p∗ = d∗ except when both primal and dual are infeasible
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Duality example: QP

• primal problem (assuming P ∈ Sn++):

minimize xTPx

subject to Ax � b

• Lagrangian:

L(x, λ) = x
T
Px+ λ

T
(Ax− b)

• gradient of Lagrangian with respect to x:

∇xL(x, λ) = 2Px+ A
T
λ
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• dual function:

g(λ) = inf
x
L(x, λ) = L(−P−1AT

λ/2, λ) = −
1

4
λ
T
AP

−1
A
T
λ− bTλ

• dual problem:
maximize −λTAP−1ATλ/4− bTλ
subject to λ � 0

– Slater’s condition implies that p∗ = d∗ if Ax̃ ≺ b for some x̃

– truth is, p∗ = d∗ always!
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Fun demo for duality
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Karush-Kuhn-Tucker (KKT) conditions

• KKT (optimality) conditions consist of

– primal feasibility: fi(x) ≤ 0 for all 1 ≤ i ≤ m, hi(x) = 0 for all 1 ≤ i ≤ p

– dual feasibility: λ � 0

– complementary slackness: λifi(x) = 0

– zero gradient of Lagrangian: ∇f0(x) +
∑m

i=1 λi∇fi(x) +
∑p

i=1 νi∇hi(x) = 0

• if strong daulity holds and x∗, λ∗, and ν∗ are optimal, they satisfy KKT condtions!
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Proof

• assume strong dualtiy holds, x∗ is primal optimal, and (λ∗, ν∗) is dual optimal

f0(x
∗
) = g(λ

∗
, ν
∗
) = inf

x

(
f0(x) +

m∑
i=1

λ
∗
ifi(x) +

p∑
i=1

ν
∗
i hi(x)

)

≤ f0(x
∗
) +

m∑
i=1

λ
∗
ifi(x

∗
) +

p∑
i=1

ν
∗
i hi(x

∗
)

≤ f0(x
∗
)
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• complementary slackness holds because

f0(x
∗
) = f0(x

∗
) +

m∑
i=1

λ
∗
ifi(x

∗
) +

p∑
i=1

ν
∗
i hi(x

∗
) = f0(x

∗
)

⇒
m∑
i=1

λ
∗
ifi(x

∗
) = 0

⇒ λ
∗
ifi(x

∗
) = 0 for all i = 1, . . . ,m

• complementary slackness implies

λ
∗
i > 0⇒ fi(x

∗
) = 0, fi(x

∗
) < 0⇒ λ

∗
i = 0

• we call those inequalities fi(x) ≤ 0 with λi > 0 active constraints
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• zero gradient of Lagrangian because

inf
x
L(x, λ

∗
, ν
∗
) = L(x

∗
, λ
∗
, ν
∗
)

⇒ x
∗

minimizes L(x, λ
∗
, ν
∗
)

⇒ ∇f0(x) +
m∑
i=1

λi∇fi(x) +
p∑
i=1

νi∇hi(x) = 0

– thus, x∗ minimizes L(x, λ∗, ν∗)

– hence (if fi and hi are differentiable)

∇f0(x) +
m∑
i=1

λi∇fi(x) +
p∑
i=1

νi∇hi(x) = 0

Gauss Labs R&D Seminar (14-May-2021) 43



Sunghee Yun Convex Optimization and Dual Problems

KKT conditions for convex optimization problem

• if x̃, λ̃, and ν̃ satisfy KKT for convex optimization problem, then they are optimal!

– complementary slackness implies f0(x̃) = L(x̃, λ̃, ν̃)

– zero gradient of Lagrangian together with convexity implies g(λ̃, ν̃) = L(x̃, λ̃, ν̃)

• for example, if Slater’s condition is satisfied for a convex optimization problem,

– x is optimal if and only if there exist λ, ν that satisfy KKT conditions

• this generalizes optimality condition ∇f0(x) = 0 for unconstrained problem

Gauss Labs R&D Seminar (14-May-2021) 44



Sunghee Yun Convex Optimization and Dual Problems

Dual problem for SVM problem

• note
minimize 1

2‖a‖
2
2 + γ

∑m
i=1 ui

subject to y(i)(aTx(i) + b) ≥ 1− ui, i = 1, . . . ,m

u � 0

• Lagrangian

L(a, b, u, λ, ν)

=
1

2
‖a‖22 + γ

m∑
i=1

ui +

m∑
i=1

λi(1− ui − y(i)(aTx(i)
+ b)) +

m∑
i=1

νi(−ui)

=
1

2
‖a‖22 −

(
m∑
i=1

λiy
(i)
x
(i)

)T

a− b
m∑
i=1

λiy
(i)

+
m∑
i=1

ui(γ − λi − νi) +
m∑
i=1

λi
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• dual function

g(λ, ν) =

 −1
2

∥∥∥∑m
i=1 λiy

(i)x(i)
∥∥∥2
2
+
∑m

i=1 λi if
∑m

i=1 λiy
(i) = 0, λi + νi = γ

−∞ otherwise

• dual problem

maximize
∑m

i=1 λi −
1
2

∥∥∥∑m
i=1 λiy

(i)x(i)
∥∥∥2
2

subject to
∑m

i=1 λiy
(i) = 0

λi + νi = γ for i = 1, . . . ,m

• or equivalently,

maximize
∑m

i=1 λi −
1
2λ

TPλ

subject to
∑m

i=1 λiy
(i) = 0

λi + νi = γ for i = 1, . . . ,m

where P = XTX � 0 and X =
[
y(1)x(1) · · · y(m)x(m)

]
∈ Rn×m

• dual problem is quadratic program
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KKT conditions for SVM problem

• assume that a∗, b∗, u∗ are primal optimal and λ∗ and ν∗ are dual optimal, then KKT

conditions imply

– y(i)(a∗
T
x(i) + b∗) ≥ 1− u∗i for i = 1, . . . ,m

– u∗i ≥ 0, λ∗i ≥ 0, ν∗i ≥ 0, λ∗i + ν∗i = γ for i = 1, . . . ,m

– ν∗i u
∗
i = 0 for i = 1, . . . ,m

– λ∗i (1− u
∗
i − y

(i)(a∗
T
x(i) + b∗)) = 0 for i = 1, . . . ,m

–
∑m

i=1 λ
∗
iy

(i) = 0

– a∗ =
∑m

i=1 λ
∗
iy

(i)x(i)

• x(i) with λ∗i > 0 are called support vectors!

– those with positive slacks (u∗i > 0), λ∗i = γ

– those on the edge (u∗i = 0), 0 < λ∗i ≤ γ

• then the boundary can be characterized by
∑m

i=1 λ
∗
iy

(i)x(i)Tx+ b∗

– with kernel, the boundary is
∑m

i=1 λ
∗
iy

(i)K(x, x(i)) + b∗
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SVM figure
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Next time

• we can discuss

– sensitivity analysis using Lagrange dual variables

– various interpretations for dual problems and dual variables

– some algorithms for convex optimization, e.g., gradient descent, Newton’s method,

etc.

– their convergence analysis

– various applications in approximation, fitting, statistical estimation, geometric

problems, etc.
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