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What will be covered today

e Convex Optimization
— why convex optimization?
— optimization problems
— definition of convex optimization
— convex optimizations in ML
e Dual Problems

— Lagrangian and dual function

— dual problem examples
— KKT condition

— optimality condition for support vector machine (SVM) formulation
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Why convex optimization?

e many machine learning algorithms (inherently) depend on convex optimization

e quite a few optimization problems can (actually) be solved

e many engineering and scientific problems can be cast into convex optimization problems
e many more can be approximated to convex optimization

e convex optimization sheds lights on understanding intrinsic property and structure of
all optimization problems
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Convex Optimization and Dual Problems

Mathematical optimization

e mathematical optimization problem:

minimize  fo(x)
subject to  fi(z) <0, 1 =1, ..

|
[ —
S

T . . :
—z=| x z, | € R"is (vector) optimization variable

— fo : R™ — R is objective function

— fi; : R™ — R are inequality constraint functions

— h; : R"™ — R are equality constraint functions
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Optimization problem example

e machine learning

— optimization variables: model parameters (e.g., neural net weights)
— objective: loss function / error function
— constraints: network architecture

Input Hidden Hidden Hidden Onatput
layer Ly layer Ly layer Ly layer Ly layer Ly
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Solution methods

e for general optimization problems

— extremely difficult to solve (practically impossible to solve), e.g., TSP

— most methods try to find (good) suboptimal solutions, e.g., using heuristics
® some exceptions

— least-squares (LS)

— liner programming (LP)

— semidefinite programming (SDP)
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Least-squares (LS)

e least-squares (LS) problem:

minimize ||Axz — b||§ = Z;Zl(afﬂﬁ — 51)2

— analytic solution: any solution satisfying (A% A)z* = A™b
— extremely reliable and efficient algorithms
— has been there at least since Gauss

e applications

— LS problems are easy to recognize

— has huge number of applications, e.g., line fitting
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Linear programming (LP)

e linear program (LP):

minimize clx

subjectto Ax < b

— no analytic solution
— reliable and efficient algorithms exist, e.g., simplex method, interiorpoint method
— has been there at least since Fourier

— systematical algorithm existed since World War I
e applications

— less obvious to recognize (than LS)

— lots of problems can be cast into LP, e.g., network flow problem
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Semidefinite programming (SDP)

e semidefinite program (SDP):

minimize clx
subjectto Fo+x1F1+---+x,F,, =0

— no analytic solution

— but, reliable and efficient algorithms exist, e.g., interior-point method
— recent technology

e applications

— never easy to recognize
— lots of problems, e.g., optimal control theory, can be cast into SDP

— extremely non-obvious, but convex, hence global optimality easily achieved!
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Max-det problem (extension of SDP)

® max-det program:

minimize clx + logdet(Fy + z1F1 + - - - + x, F})
subjectto Go+ x1G1+ -+ x2,G, = 0
Fo+x1Fy+---+xpFp, =0

— no analytic solution
— but, reliable and efficient algorithms exist, e.g., interior-point method
— recent technology

e applications

— never easy to recognize
— lots of stochastic optimization problems, e.g., every covariance matrix is positive
semidefinite

— again convex, hence global optimality (relatively) easily achieved!
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Common features in these exceptions?

e they are convex optimization problems!

® convex optimization:
minimize  fo(x)

subject to  fi(z) <k; 0, i =1,...,m
Ax = b

where
— fo(Az + (1= AN)y) < Afo(z) + (1 —A)fo(y) forallz,y € R"and 0 < A <1
- fi:R" — R¥i are K;-convex w.r.t. proper cone K; C RFi

— all equality constraints are linear
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Convex optimization

e algorithms

— classical algorithms like simplex method still work well for many LPs

— many state-of-the-art algorithms develoled for (even) large-scale convex optimization
problems

* barrier methods

x primal-dual interior-point methods

e applications

— huge number of engineering and scientific problems are (or can be cast into) convex
optimization problems

— many others can be (approximately) solved using convex relaxation
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What'’s the fuss about convex optimization? Here's why!

e which one of these problems are easier to solve?

— (generalized) geometric program with n = 3,000 variables and m = 1,000
constraints

. PO 80,i,1 B0.i,n
minimize 21 0Ty R 2
: Pj Pji1 Bjin .
subject to > .7, a7 R <1l,757=1,...,m

with Qg > 0 and Bj,z',k €R
— minimization of 10th order polynomial of n = 20 variables with no constraint
L 10 10 i1 :
minimize > ;g D1 Cipin®y T

with Ciq,...rin €R

Gauss Labs R&D Seminar (14-May-2021) 12



Sunghee Yun Convex Optimization and Dual Problems

What'’s the fuss about convex optimization? Here's why!

e which one of these problems are easier to solve?

— (generalized) geometric program with n = 3,000 variables and m = 1,000
constraints

. PO 80,i,1 B0.i,n
minimize 21 0Ty R 2
: Pj Pji1 Bjin .
subject to > .7, a7 R <1l,757=1,...,m

with Qg > 0 and Bj,z',k: €R
= the global optimum can be found within 1 minute using your laptop!
— minimization of 10th order polynomial of n = 20 variables with no constraint

C . 10 10 ‘ G in
minimize Zil:l Tt Zinzl Ciq,...,inLy1 "Ly

with Ciq,...rin €R
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What'’s the fuss about convex optimization? Here's why!

e which one of these problems are easier to solve?

— (generalized) geometric program with n = 3,000 variables and m = 1,000
constraints

. PO 80,i,1 B0.i,n
minimize 21 0Ty R 2
: Pj Pji1 Bjin .
subject to > .7, a7 R <1l,757=1,...,m

with Qg > 0 and Bj,z',k: €R
= the global optimum can be found within 1 minute using your laptop!
— minimization of 10th order polynomial of n = 20 variables with no constraint

C . 10 10 ‘ G in
minimize Zil:l Tt Zinzl Ciq,...,inLy1 "Ly

with Ciq,...rin €R
= you cannot solve it!
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Properties of convex optimization

e convex optimization problems can be solved extremely reliably (and fast)

e a local minimum is a global minimum, which is implied by

fly) > f(z) + V() (y — =)

e nice theoretical property, e.g., self-concordance implies complexity bound (for Newton's
method)

f(xo) — p°
Y

+ log, 10%2(1/6)

e even better pratical performance!

e more on this in future seminars (hopefully)
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Convex optimization example in ML: linear regression

e formulation

2

1 .
minimize  f(0) = L 37 (QT [ : ] _ yu))
x
e linear regression is nothing but LS since

) (1 T T ey

mf(0) = 2:; <9T{ aji) } —y“)) =] :  |O0-

2
— HXQ - ?JH2

e convex in 6, hence obtains its global optimality when the gradient vanishes, i.e.,

mVF(0) =2X" (X0 —y)=2((X"X)0— X"y) =0

Gauss Labs R&D Seminar (14-May-2021) 16



Sunghee Yun Convex Optimization and Dual Problems

Convex optimization example in ML: ridge regression

e Ridge regression solves the following problem: (for some A > 0)
minimize  fo(z) = [|Az — y||; + Az

— regularization, e.g., to preventing overfitting
e can be extended to (without sacraficing solvability!)

2
L A Y
minimizefo(e) = [l Az vl + Al = | | 5, [o= |8
VI 0 ]|,
subject to  fi(z) <0, i=1,...,m
hi(x) =0, t1=1,...,p

e can be incorporated into gradient descent algorithm, e.g.,

Vilx) = 2AT(A:1: —y) + 2z
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Convex optimization example in ML: lasso

e (lasso stands for least absolute shrinkage & selection operator)

e lasso solves (a problem equivalent to) the following problem:
minimize  fo(z) = ||Az — y||* + \||z|x

— 1-norm penalty term for parameter selection
® objective funtion not smooth.

e however, simple trick would solve this problem (with additional convex inequality
constraints and affine equality constraints)

minimize  fo(z) = ||[Az — y||? + A D27, 2z
subjectto —z; < x; <z, 1=1,...,n
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Convex optimization example in ML: SVM

e problem definition:
— given V) ¢ RP: input data, and y(i) € {—1,1}: output labels
— find hyperplane which separates two different classes as distinctively as possible (in
some measure)

e (typical) formulation:

minimize  ||a||3 + v >, w
subject to y(i)(aT:U(i) +b)>1—wu;,y, t=1,...,m
u >0

— convex optimization problem with optimization variables, a € R?, b € R, and
u € R™

— hence stable and efficient algorithms exist even for very large problems
— has worked extremely well in practice
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Support vector machine with kernels

e use feature transformation ¢ : R® — R? (with ¢ > p)
e formulation:

minimize  ||a||3 + v Do, G
subject to  yW(aTp(x) +b) >1 -, i=1,...,m
@ >0

~

e still convex optimization problem with optimization variables, @ € R%, b € R, and

u € R™
¢ e @
° /o0 .
ele o
) e o
Input Space Feature Space
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Duality

every (constrained) optimization problem has a dual problem (whether or not it is a
convex optimization problem)

every dual problem is a convex optimization problem (whether or not the primal problem
is a convex optimization problem)

duality provides optimality certificate, hence plays central role for modern optimization
and machine learning algorithm implementation

(usually) solving one readily solves the other!
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Lagrangian

e standard form problem:

minimize  fo(x)
subject to fi(x) <0, i=1,...,m

I
[
iS)

where x € R" is optimization variable, D is domain, p* is optimal value
e Lagrangian: L : R" X R™ X R” —+ R with dom L = D x R™ x R? defined by

L(m7 >‘7 V) — fO(x) + Z Azfz(x) -+ Z Vih’i(aj)

— \;: Lagrange multiplier associated with f;(x) < 0
— v;: Lagrange multiplier associated with h;(z) = 0
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Lagrange dual function

e Lagrange dual function: g : R™ X R” — R defined by

g()‘7 V) — alcrellf;L(Cm )‘7 V) — ;glf; <f0($) + Z AZfz(x) + Z Vihi(x)>
1=1 1=1

— g is always concave
— g(A,v) can be —oo
e lower bound property: if A > 0, then g(\,v) < p*
Proof: If & is feasible and X > 0, then fo(Z) > L(Z,\,v) >

infyep L(x, A\, v) = g(A,v). Thus,
* — . f >
p = inf fo(z) > g(A,v)

where F ={z | fi(z) < 0forl <i<m, hj(r) =0for1 <j <p}
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Dual problem

e Lagrange dual problem:
maximize  g(A, v)
subjectto A >0

— is a convex optimization problem

— provides a lower bound on p*

e let d* denote the optimal value for the dual problem
— weak duality: d* < p*

— strong duality: d* = p*
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Dual problem provides optimality certificate

e many algorithms solves the dual problem simultaneously
— Lagrangian dual variables obtained with no additional cost

e if iterative algorithm generates feasible solution sequence,
(x(l)’ )\(1)’ 1/(1)) N (:1:(2), )\(2)’ V(2)) N (x(3)’ )\(3)’ 1/(3)) .
then, we have an optimality certificate:

F@®y —p* < f(@™) — g\ ™)

T

3(:@"(@)) ‘V‘( ;y‘b(w)
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Weak duality

e weak duality implies d* < p*
— always true (by construction of dual problem)

— provides nontrivial lower bounds, especially, for difficult problems, e.g., solving the

following SDP:
maximize —17v
subject to W 4 diag(v) >~ 0

gives a lower bound for (NP-hard) max-cut problem (maximizing total weight of
edges between a subset of vertices and its complement)

minimize ='Wz
subjectto x; =1, t=1,...,n
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Derivation of dual problem of max-cut problem

e lLagrangian

L(z,v) =2 Wz + Z vi(z: — 1) =z’ (W + diag(v))z — 1" v

1=1

e dual function

g(v) = inf L(z,v)=

rE

—1"v  if W + diag(v) = 0
— 00 otherwise

because 2’ (W + diag(v))x is unbounded below if W 4 diag(v) % 0
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e hence, the dual problem

maximize —11v
subject to W + diag(v) > 0

where the optimization variable is v € R"
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Dual of the dual of max-cut problem

e let the dual of the max-cut problem be our primal problem here

e primal problem
maximize —17v
subject to W 4 diag(v) >~ 0

e Lagrangian

L(v,X)=—-1"v+Tr X(W +diag(v)) = > v(Xii— 1) + Tr XW
1=1
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e dual function

g(X) = sup L(v, X) =

n o0 otherwise
I/ER

® hence, the dual problem

minimize Tr XW
subjectto X;; =1forze=1,...,n
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Dual of dual is convex relaxation of the original problem

e now add rank one constraint 7.e.,

minimize Tr XW
subjectto X;; =1lfore=1,...,n
rank(X) =1

then this is equivalent to the original max-cut problem because

rank(X) =1< X = zz’ for some z € R”

then
Te XW =Trazae’ W =Trz Wa = 2 Wz

and
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e thus it is the convex relaxation of the original problem

e hence, if d™* is the optimal value of the dual of the dual, we have

because the dual problem is strictly feasible, i.e., satisfies Slater's condition (later)
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Strong duality

*

e strong duality implies d* = p
— not necessarily hold; does not hold in general
— wusually holds for convex optimization problems

— conditions which guarantee strong duality in convex problems called constraint
qualifications

— example of constraint qualifications: Slater's condition
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Duality example: LP

e primal problem:

minimize el

subjectto Ax < b

e Lagrangian:

Lz, \N)=cz+ X (Az —b) = (c+ A"\ 'z —b" A

e dual function:

'\ fATA A+ c=0
— 00 otherwise

g(A\) = igf L(x,\) = {
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e dual problem:

maximize —bl )\
subject to ATA+c¢=0
A~ 0

— Slater’s condition implies that p* = d* if AZ < b for some &

— truth is, p* = d* except when both primal and dual are infeasible
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Duality example: QP

e primal problem (assuming P € S” _):

minimize ! Px
subjectto Ax <X b

e Lagrangian:
L(z,\) = 2" Pz + X" (Az — b)

e gradient of Lagrangian with respect to x:

VoL(z,\) = 2Pz + A"\
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e dual function:

1
g(\) =inf L(z,\) = L(—=P 'A"X\/2,)) = —Z\TAP—lAT/\ —b'A

e dual problem:
maximize —A AP 1ATN/4 — b1\
subjectto A >~ 0

— Slater’s condition implies that p* = d* if AZ < b for some &

— truth is, p* = d* always!
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Fun demo for duality
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Karush-Kuhn-Tucker (KKT) conditions

e KKT (optimality) conditions consist of
— primal feasibility: f;(x) < Oforall1 <7 <m, hi(xz) =0forall 1 <i<p
— dual feasibility: A >~ 0
— complementary slackness: \;f;(x) = 0

— zero gradient of Lagrangian: V fo(z) + >_." MV fi(z) + >0, v;Vhi(z) =0

e if strong daulity holds and =™, A\*, and v™ are optimal, they satisfy KKT condtions!
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Proof

e assume strong dualtiy holds, =" is primal optimal, and (A™, v™) is dual optimal

fo(z™) g(A",v") = inf (fo(fl?) + Z A fi(x) + Z thz($)>

IA

fo@) + D A @) + D vihi(a")
1=1 1=1
< fo(z")
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e complementary slackness holds because
m p
fo(z™) = fo(z™) + D A fi(z™) + D vihi(z") = fo(z”)
i=1 i=1
= > A fi(z") =0
i=1
= X fi(z')=0foralli=1,...,m

® complementary slackness implies

e we call those inequalities f;(x) < 0 with A\; > 0 active constraints
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e zero gradient of Lagrangian because
inf L(x, \*,v") = L(z", \", V")

= 2" minimizes L(z, \*, V")

1=1 1=1

— thus, ™ minimizes L(x, A\*, V™)
— hence (if f; and h; are differentiable)

Volx) + > NiVfi(x) + > v Vhi(z) =0
1=1 1=1
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KKT conditions for convex optimization problem

~

e if £, A\, and v satisfy KKT for convex optimization problem, then they are optimal!

— complementary slackness implies fo(Z) = L(&, X, D)

— zero gradient of Lagrangian together with convexity implies g(\, &) = L(z, X, D)
e for example, if Slater's condition is satisfied for a convex optimization problem,

— x is optimal if and only if there exist A\, v that satisfy KKT conditions

e this generalizes optimality condition V fy(x) = O for unconstrained problem
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Dual problem for SVM problem

® note
minimize  i{lall3 + v >oim, wi
subject to y(i)(aT:c(i) +b)>1—wu;, t=1,...,m
u >0

e lLagrangian

L(a,b,u, \,v)

1 m m ) ) m
= Slalls +v > u+ > N —wi =y @ e +5) + 3 S vi(—w)
1=1 1=1

1=1

T m m m
= Zllall3 - (Z My e )> a—bd Ay D wily = A=)+ >N
1=1 1=1 1=1
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e dual function

g()\,l/) —

e dual problem

e or equivalently,

Convex Optimization and Dual Problems

. ]2 ,
3 szil iy DD SR D Ay =0, A +vi =~

— 00 otherwise

. N
maximize ST X\ — HZL Ay D)

2
subject to > ", Ay =0
Nituvi=~fori=1,...,m

maximize > A — AATPA
subject to S Ay =0
Nitvi=~forie=1,...,m

where P = XTX >= 0 and X = [ YW@ g m) g (m) } c R

e dual problem is quadratic program
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KKT conditions for SVM problem

e assume that a™, b*, u™ are primal optimal and A\* and v* are dual optimal, then KKT
conditions imply

— D@2 b)) > 1 —wufori=1,...,m
—u; 20, >0,v;, >0, X\ +v, =yfori=1,...,m
- viu;, =0fori=1,...,m

- A1 —uf —y D@2+ b)) =0fri=1,...,m
- >ty )‘;'ky(z) =0
—a*=3", A;‘y(’)x(’)
o 29 with A; > 0 are called support vectors!
— those with positive slacks (u; > 0), A7 =~
— those on the edge (u; = 0), 0 < A7 < v
e then the boundary can be characterized by > 7", )\;ky(i)a;(i)Tx + b
— with kernel, the boundary is S°7 , X1y WK (x, V) 4 b*
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SVM figure
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Next time

® we can discuss

— sensitivity analysis using Lagrange dual variables

— various interpretations for dual problems and dual variables

— some algorithms for convex optimization, e.q., gradient descent, Newton's method,
etc.

— their convergence analysis

— various applications in approximation, fitting, statistical estimation, geometric
problems, etc.
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